偏导数定义中如果使用聚点,写为“函数$z = f\left( {x,y} \right)$的定义域为D,$\left( {{x_0},{y_0}} \right)$是D的聚点,且$\left( {{x_0},{y_0}} \right) \in D$”,则由于聚点只保证了其任意去心邻域内有D中的点,而这些点的集合不一定包含沿$x$轴或$y$轴方向的直线,从而无法定义对$x$的或对$y$的偏导数,因此不能使用聚点.
聚点:如果对于任意给定的$\delta > 0$,点P的去心邻域$\mathop U\limits^{\text{o}} \left( {P,\delta } \right)$内总有平面点集E中的点,则称P是E的聚点.
多元函数极限的概念
定义 设二元函数$f\left( P \right) = f\left( {x,y} \right)$的定义域为D,${P_0}\left( {{x_0},{y_0}} \right)$是D的聚点.如果存在常数A,对于任意给定的正数$\varepsilon $,总存在正数$\delta $,使得当点$P\left( {x,y} \right) \in \mathop U\limits^{\text{o}} \left( {{P_0},\delta } \right)$时,都有
$$\left| {f\left( P \right) - A} \right| = \left| {f\left( {x,y} \right) - A} \right| < \varepsilon $$成立,那么就称常数A为函数$f\left( {x,y} \right)$当$\left( {x,y} \right) \to \left( {{x_0},{y_0}} \right)$时的极限.记作
$$\mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {{x_0},{y_0}} \right)} f\left( {x,y} \right) = A$$或
$$f\left( {x,y} \right) \to A\left( {\left( {x,y} \right) \to \left( {{x_0},{y_0}} \right)} \right)$$也记作
$$\mathop {\lim }\limits_{P \to {P_0}} f\left( P \right) = A$$或
$$f\left( P \right) \to A\left( {P \to {P_0}} \right)$$为了区别于一元函数的极限,把二元函数的极限叫做二重极限.
多元函数连续性的概念
定义 设二元函数$f\left( P \right) = f\left( {x,y} \right)$的定义域为D,${P_0}\left( {{x_0},{y_0}} \right)$是D的聚点,且${P_0} \in D$.如果
$$\mathop {\lim }\limits_{\left( {x,y} \right) \to \left( {{x_0},{y_0}} \right)} f\left( {x,y} \right) = f\left( {{x_0},{y_0}} \right)$$那么称函数$f\left( {x,y} \right)$在点${P_0}\left( {{x_0},{y_0}} \right)$连续.
二元函数对$x$的偏导数
定义 设函数$z = f\left( {x,y} \right)$在点$\left( {{x_0},{y_0}} \right)$的某一邻域内有定义,当$y$固定在${y_0}$而x在${x_0}$处有增量$\Delta x$时,相应的函数有增量
$$f\left( {{x_0} + \Delta x,{y_0}} \right) - f\left( {{x_0},{y_0}} \right)$$如果
$$\mathop {\lim }\limits_{\Delta x \to 0} \frac{{f\left( {{x_0} + \Delta x,{y_0}} \right) - f\left( {{x_0},{y_0}} \right)}}{{\Delta x}}$$存在,则称此极限为函数$z = f\left( {x,y} \right)$在点$\left( {{x_0},{y_0}} \right)$处对$x$的偏导数,记作
\[\begin{gathered} {\left. {\frac{{\partial z}}{{\partial x}}} \right|_{x = {x_0},y = {y_0}}},{\left. {\frac{{\partial f}}{{\partial x}}} \right|_{x = {x_0},y = {y_0}}}, \hfill \\ {\left. {{z_x}} \right|_{_{x = {x_0},y = {y_0}}}},{f_x}\left( {{x_0},{y_0}} \right) \hfill \\ \end{gathered} \]偏导数定义中如果使用聚点,写为“函数$z = f\left( {x,y} \right)$的定义域为D,$\left( {{x_0},{y_0}} \right)$是D的聚点,且$\left( {{x_0},{y_0}} \right) \in D$”,则由于聚点只保证了其任意去心邻域内有D中的点,而这些点的集合不一定包含沿$x$轴或$y$轴方向的直线,从而无法定义对$x$的或对$y$的偏导数,因此不能使用聚点.