课程表

微分方程

一阶齐次微分方程

一阶线性微分方程&常数变易法的原理

可以降阶的高阶微分方程

高阶线性微分方程

二阶常系数齐次线性微分方程

可化为齐次的一阶微分方程

一阶微分方程

\begin{equation} \frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{ax + by + c}}{{{a_1}x + {b_1}y + {c_1}}} \end{equation}

当$c=c_1=0$时,有

$$\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{a + b\frac{y}{x}}}{{{a_1} + {b_1}\frac{y}{x}}}$$

所以方程是齐次的,否则不是齐次的.非齐次时,我们用下面的方法将其化为齐次的:

$$x = X + h,y = Y + k$$

其中$h,k$是待定常数.则

$${\text{d}}x = {\text{d}}X,{\text{d}}y = {\text{d}}Y$$

于是方程$(1)$化为

$$\frac{{{\text{d}}Y}}{{{\text{d}}X}} = \frac{{aX + bY + ah + bk + c}}{{{a_1}X + {b_1}Y + {a_1}h + {b_1}k + {c_1}}}$$

如果方程组

$$\left\{ {\begin{array}{*{20}{c}} {ah + bk + c = 0,}\\ {{a_1}h + {b_1}k + {c_1} = 0,} \end{array}} \right.$$

计算得

$$\left\{ {\begin{array}{*{20}{c}} {k = \frac{{{a_1}c - ac}}{{a{b_1} - {a_1}b}}}\\ {h = \frac{{bc - {b_1}c}}{{a{b_1} - {a_1}b}}} \end{array}} \right.$$

注意,$h,k$有解的条件是分母$ab_1-a_1 b≠0$,即方程组的系数行列式

$$\left| {\begin{array}{*{20}{c}} a&b\\ {{a_1}}&{{b_1}} \end{array}} \right| = a{b_1} - {a_1}b \ne 0,$$

即$\frac{{{a_1}}}{a} \ne \frac{{{b_1}}}{b}$,这样,方程$(1)$可化为齐次方程

$$\frac{{{\rm{d}}Y}}{{{\rm{d}}X}} = \frac{{aX + bY}}{{{a_1}X + {b_1}Y}}$$

求出这个齐次方程的通解后,在通解中以$x+h$代替$X$,以$y+k$代替$Y$就得到方程$(1)$的通解.

如果$ab_1-a_1 b=0$,无法解出$h,k$,此时令$\frac{{{a_1}}}{a} = \frac{{{b_1}}}{b} = \lambda $,即$a_1=λa$,$b_1=λb$,则方程$(1)$写为

$$\frac{{{\rm{d}}y}}{{{\rm{d}}x}} = \frac{{ax + by + c}}{{{a_1}x + {b_1}y + {c_1}}} = \frac{{ax + by + c}}{{\lambda (ax + by) + {c_1}}}$$

令新变量$u=ax+by$,则

$$\frac{{{\rm{d}}u}}{{{\rm{d}}x}} = a + b\frac{{{\rm{d}}y}}{{{\rm{d}}x}}$$

$$\frac{{{\rm{d}}y}}{{{\rm{d}}x}} = \frac{1}{b}(\frac{{{\rm{d}}u}}{{{\rm{d}}x}} - a)$$

则方程$(1)$变为

$$\frac{1}{b}\left( {\frac{{{\rm{d}}u}}{{{\rm{d}}x}} - a} \right) = \frac{{u + c}}{{\lambda u + {c_1}}}$$

这是可分离变量的方程.